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In this paper, we have identified a new mechanism which can promote rapid growth 
of three-dimensional disturbances. The mechanism involves the interaction between a 
planar mode and an oblique mode, or a pair of oblique modes, which are phase-locked 
in the sense that they have the same phase speed. This allows a powerful nonlin- 
ear interaction to take place within the common critical layer(s). The disturbance 
is not required to form a subharmonic resonant triad, and hence the mechanism 
operates under much less restrictive conditions than does subharmonic resonance 
(although it is somewhat less powerful). We show that the quadratic interaction 
between the planar mode and the oblique modes drives an exceptionally large forced 
mode with the difference frequency, which in turn interacts with the planar mode 
to contribute the dominant nonlinear effect. This interaction can cause the oblique 
modes to grow super-exponentially provided that their magnitude is sufficiently small. 
As a result of the super-exponential growth, the oblique mode may soon become 
strong enough to produce a feedback effect on the planar mode, so that the interac- 
tions eventually become fully coupled. This subsequent stage takes slightly different 
forms depending on whether a single or a pair of oblique modes is present. Both 
cases are investigated. Particular attention is paid to symmetric plane shear layers, 
e.g. a planar wake or jet, for which subharmonic resonance of sinuous modes is 
inactive. 

1. Introduction 
In an incompressible parallel or nearly parallel flow, laminar-turbulent transition 

is often initiated by a predominantly two-dimensional disturbance, which devel- 
ops according to linear instability theory. However, sufficiently far downstream, 
three-dimensional disturbances grow more rapidly, and become dominant. This is 
presumably a nonlinear effect since linear theory predicts that the fastest-growing 
mode is two-dimensional. 

At least two mechanisms have been suggested to explain this rapid growth of three- 
dimensional disturbances. The first is the ‘secondary-instability’ theory (see e.g. Herbert 
1988 and references therein), which proposes that the mean flow plus a finite-amplitude 
two-dimensional disturbance can support three-dimensional instability waves. While 
this is an attractive and physically valid notion, it still lacks a solid mathematical 
justification except in the case where an equilibrium two-dimensional wave exists. 
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The second mechanism is the subharmonic resonant-triad interaction proposed 
by Raetz (1959) and Craik (1971) for boundary-layer transition. Recent studies of 
subharmonic resonance have given considerable insight into transition processes in 
boundary layers and other shear flows: see for example Goldstein & Lee (1992), Wu 
(1992, 1993h, 1995a), Mankbadi, Wu & Lee (1993), Wundrow, Hultgren & Goldstein 
(1994) and Lee (1994). However, some important transition phenomena cannot be 
explained by such a mechanism, of which the following are examples. 

(a) Disturbances which do not form a resonant triad are also observed to develop 
quickly. For instance, Corke & Mangano (1989) find that in addition to the sub- 
harmonic, a broad band of three-dimensional disturbances also undergoes enhanced 
growth. 

( b )  A symmetric shear flow such as a plane wake supports two types of linear 
instability modes, namely ‘sinuous’ modes, for which the vertical velocity is symmetric 
about the centreline, and ‘varicose’ modes, for which it is antisymmetric. Subharmonic 
resonance can take place among varicose modes (Mallier 1995), but for sinuous modes 
such a mechanism is inactive because the contributions from the two critical layers 
cancel (Wu 1995~).  On the other hand, linear theory predicts that the fastest-growing 
instabilities are sinuous modes, and indeed these are observed to dominate in the 
early stages of transition. It is not clear, therefore, that subharmonic resonance 
can convincingly explain the rapid amplification of three-dimensional disturbances 
observed in a plane wake (Corke, Krull & Ghassemi 1992; Williamson & Prasad 
1993a,b). 

This paper offers a new explanation for such observations. The proposed mechanism 
involves a nonlinear interaction between a planar mode and an oblique mode (or 
a pair of oblique modes) which have the same phase speed, and hence share the 
same critical layer(s). We shall refer to this as a phase-locked modal interaction. The 
mechanism can operate in any quasi-parallel flow, symmetric or asymmetric, which 
admits Rayleigh instabilities. For an asymmetric flow, or for varicose modes in a 
symmetric flow, we shall assume that the disturbance does not form a subharmonic 
resonant triad; the reason for which will be explained in 55.3. For sinuous modes in 
a symmetric flow, such a restriction is unnecessary. In both cases, we show that the 
interaction contributes a cubic term in the amplitude equation, which can cause the 
oblique modes to grow super-exponentially, while the planar mode is still evolving 
exponentially, unaffected by the oblique modes. This is very similar to the effect of 
the usual quadratic parametric resonance (see e.g. Goldstein & Lee 1992). Eventually 
the oblique modes may become strong enough to produce a feedback effect on the 
planar mode through mutual interactions at the cubic level, and the development of 
the modes is then ‘fully coupled’. In addition, if a pair of oblique modes is introduced, 
the self-interaction between the oblique modes also comes into play at this stage. 

The paper is organized as follows. In the next section, we formulate the problem 
for an arbitrary shear-flow profile which is assumed to be inviscidly unstable. The 
underlying asymptotic scalings are derived and explained, and an important interplay 
between the flows inside and outside the critical layers is illustrated. In $3, we perform 
an appropriate asymptotic expansion of the solution in the main part of the flow. In 
$4, the flow within the viscous, non-equilibrium critical layers is analysed and solutions 
are found analytically. Matching them onto those in the outer region, we obtain the 
(coupled) amplitude equations ($5). In $6, the generic analysis is specialized to a plane 
wake, and the coefficients involved in the amplitude equations are evaluated explicitly. 
The amplitude equations are studied in $7, both analytically and numerically. In $8, 
the results are discussed and related to experiments on transition in a plane wake. 

X .  Wu and P. A.  Stewart 
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2. Formulation and scalings 
We assume that the flow is described in terms of Cartesian coordinates ( x , y , z ) ,  

where x, y and z are streamwise, transverse and spanwise coordinates respectively; 
they are non-dimensionalized by d., the thickness of the shear layer at a typical stream- 
wise location, say x = 0. The time ( t ) ,  velocity and pressure are non-dimensionalized 
by &/U,,  U ,  and p*UZ respectively, where U ,  is a reference velocity and p.  is the 
density of the fluid. The Reynolds number R is defined as 

Us& R = -  
V* 

where v. is the kinematic viscosity. Throughout this paper, we shall assume that 
R >> 1 so that a self-consistent theory can be constructed. The analysis applies to any 
inviscidly unstable, quasi-parallel two-dimensional flow with velocity profile 

where the dependence on the slow variable 

~3 = x / R  (2.3) 

(2.4) 

The following two types of disturbance will be investigated: 
Case I :  a planar mode (ao, 0, co) with magnitude of order E interacts with a 

single oblique mode (a, -p, c )  with magnitude of order 6, where a. is the streamwise 
wavenumber of the planar mode and co its phase speed, while a, and c represent 
respectively the streamwise and spanwise wavenumbers and the phase speed of the 
oblique mode. 

Case 11: a planar mode (ao, 0, CO) interacts with pair of oblique modes (a, kp, c). 
It turns out that the relevant amplitude equations for this case can be obtained by a 
straightforward modification of those for case I .  

Both the planar and the oblique modes satisfy Rayleigh’s equation to leading order. 
According to linear theory, a mode excited upstream will grow exponentially, and 
eventually becomes neutral at some downstream location, because of the viscous 
spreading of the shear layer. It follows from Squire’s transformation that if 

represents the non-parallel flow effect. We denote the perturbed flow by 

(U  + u,R-’T/ + v, w )  . 

a2 + p2 = a; , (2.5) 

the planar mode (ao,O,co) and the oblique modes (a,fP,c) all become neutral at 
the same location. Nonlinear effects are likely to come into play near such a point 
since according to linear theory the disturbance attains its maximum amplitude there, 
and because, as will become apparent, the nonlinearity can come into play at much 
smaller magnitudes in this region. Moreover, when condition (2.5) is satisfied, the 
modes are ‘phase-locked’ in the sense that they have the same phase speed, i.e. 

c o = c ,  (2.6) 

and so share the same critical layer(s). This fact is significant because it allows 
for particularly efficient nonlinear interactions to take place in the common critical 
layer( s). 

Condition (2.5) can be represented in wavenumber space as shown in figure 1. For a 
given ao, any point on the semicircle represents an oblique mode which has the same 
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FIGURE 1. Conditions for the subharmonic resonance and the phase-locked interaction. For a 
given cto, any point on the semicircle, a2 + /I2 = a: (a  > 0), represents an oblique mode which is 
phase-locked with the planar mode (ao, 0, c). The subharmonic resonance occurs for 0 w 60", while 
the phase-locked interaction occurs for virtually all 0. 

phase velocity as the planar mode, and hence can participate in the phase-locked 
interaction. Subharmonic resonance is a special case corresponding to 6' = 60". We 
note, however, that (2.5) is not always a necessary condition: it is merely required that 
the modes are close to neutral and satisfy (2.6). For example, in a symmetric plane 
wake or jet, a phase-locked interaction can take place between a (nearly) neutral 
sinuous mode and a (nearly) neutral varicose mode since they have the same phase 
speed, even though (2.5) is not satisfied. Therefore, we shall not restrict our analysis 
to (2.5). We shall always assume, however, that 

a o > a ,  (2.7) 

which is certainly the case when (2.5) holds; the reason for this assumption is 
explained below (2.15). 

For the reasons stated earlier, it is thus appropriate to assume that nonlinear effects 
are important in the vicinity of the neutral location, where the local (spatial) growth 
rate is small, of order p say. It follows that the local frequencies of the plane and 
oblique modes, wo and w ,  deviate from their local neutral values by O(p).  More 
precisely 

(2.8) 
where So and S are positive and of order one. For simplicity, in this paper we assume 
So = S ; the more general situation with SO # S can be analysed by a straightforward 
extension. It is then convenient to introduce 

( = x - (c - pS)t , (2.9) 

coo = ao(c - pS0) , co = a(c - pS) , 

which is the coordinate travelling with the common phase speed. To leading order, 
the vertical velocity of the planar mode has the form 

212D - eB(xl)4b(y)eiNoc + C.C. + . . . , (2.10) 

where e << 1, and B is of order one and is a function of the intermediate spatial 
variable 

(The factor c-' is introduced for later convenience.) 

x1 = pc-'x . (2.11) 
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u 3 D  - 6A(xl)~a(y)e1(+~z)  + C.C. + . . . . (2.12) 

In the present paper, it is assumed that both the planar and the oblique wave grow 
in the streamwise direction. This would be the case for an initial excitation periodic 
along the spanwise direction (see e.g. Schneider & Coles 1994). However, for other 
types of excitation, it may be appropriate to allow for a more general modulation by 
introducing a slow spanwise variable together with the streamwise variable x1. 

As in Wu (1992), in order to derive the underlying scaling, we write down the 
x-momentum equation for the disturbance, namely 

a p  auu a u v  auw 
ac " 1  - ax ax ay  az , (2.13) 

a -  
[pc - 'a ,  + (U  - c + pS)- u+ U ' u - K ' A u  = -- - - - - - - 

where d / d t  has been replaced by -(c - pS)d/a[ in view of (2.9). We are in- 
terested in the so-called non-equilibrium critical-layer rkgime, in which the spatial 
variation term pc-' Udu/dxl is comparable with (U  - c + pS)du/dc. This implies 
that the thickness of the critical layer is of O(p).  As a critical level, y = yc say, 
is approached, the streamwise velocity of the oblique mode exhibits a simple pole 
singularity, u 3 D  - 6(y  - yC)- l ,  so that u 3 D , y  = O ( ~ P - ~ )  in the critical layer. The 
normal velocities of the planar and oblique waves are of order e and 6 respectively, 
both within the critical layers and in the main part of the flow. Within a critical 
layer, the interaction between the planar and the oblique modes, typically through 
the ( d / d Y ) ( U 2 D U 3 D )  term, produces a forcing term of 0 ( ~ 6 p - ~ )  in the x-momentum 
equation. This generates two forced modes (a0 f a,TP,c) ,  both of which have a 
u-component of magnitude of O ( ~ 6 p - ~ ) ,  as can be deduced by balancing the forc- 
ing with the pc-'Udu/dx1 term in (2.13). We find that the streamwise velocity of 
the sum mode (a0 + a,-P,c) decays (algebraically) towards the edge of the criti- 
cal layer, while that of the difference mode (a0 - a,P,c) does not, and thus has a 
magnitude of O(e6pP3) in the main part of the flow. It follows that the difference- 
mode pressure is of the same order, and so drives a streamwise velocity, say U d ,  of 
O ( ~ 6 p - ~ )  in the critical layer. The interaction of this with the planar mode, typi- 
cally through the ( d / d y ) ( u 2 D u d )  term, generates a u-component of 0 ( ~ ~ 6 p - ~ )  in the 
oblique mode (a ,  -P, c). Nonlinearity will affect the evolution of the oblique mode 
if this nonlinearly generated velocity balances the O(6p) velocity discontinuity in the 
solution in the outer region, i.e. when ~ ~ 6 p ~ ~  - 6p. This implies the distinguished 
scaling 

E = /p . (2.14) 

Once the planar mode has attained this magnitude, it will affect the development 
of the oblique mode even when the latter is infinitesimal. As will be shown later, 
provided that the oblique mode is not too large (6 << O ( E ~ / ~ ) ) ,  the planar mode still 
evolves linearly, unaffected by the presence of the oblique mode. We refer to this 
rkgime as the 'secondary-instability' stage. It turns out that in this stage, the oblique 
mode can experience super-exponential growth. 

However if the magnitude of the oblique mode becomes sufficiently large, either 
through initial forcing or as a result of the super-exponential growth, it will produce 
a back reaction on the planar mode. It turns out that the interaction between the 
oblique mode and the leading-order difference mode does not produce a velocity jump 
across the critical layer, and so does not influence the evolution of the planar-mode 
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ariiplitude. The dominant feedback comes from the interaction of the oblique mode 
with the second-order difference mode and the sum mode, both of which are of 
O ( t . 6 ~ ~ ~ )  within the critical layer, to produce an O(e62p-4) forcing. This generates 
an O(t.d2pP5) correction in the planar mode, which balances the linear growth when 
&pPs - t.p. The appropriate scaling is thus 

We note that this asymmetry between the scalings for the planar and oblique modes 
depends on the assumption (2.7). If instead CIO < CI, the roles of the planar and 
oblique modes would be exchanged: the planar mode could not influence the oblique 
mode until its amplitude reached O(p3) ,  while the oblique mode would require a 
magnitude of only O(p712) to affect the planar mode. Since in the linear rkgime 
the fastest-growing mode is two-dimensional, it seems likely that a planar mode 
will be the first to reach the necessary magnitude, O(p7/*),  to provoke a non- 
linear interaction of this type. The assumption (2.7) is based on this considera- 
tion. 

In the following, we shall concentrate on the ‘fully-coupled’ stage, where the planar 
and oblique modes have magnitudes specified by (2.14) and (2.15). The ‘secondary- 
instability’ rkgime, corresponding to 6 << O(e6l7), can be obtained in an appropriate 
limit (see 57.2). When a pair of oblique modes is included, rather than a single oblique 
mode, the fully coupled stage takes a slightly different form since the interaction 
between the oblique modes contributes an extra nonlinear term to the final amplitude 
equations. It should be emphasized, however, that the phase-locked mechanism is 
a two-mode interaction, rather than a three-mode interaction as for subharmonic 
or side-band resonance. In order to illustrate this, the detailed analysis will be 
carried out for a planar wave and a single oblique wave. The appropriate amplitude 
equations for a planar wave and a pair of oblique waves can then be obtained by 
incorporating the results of Wu, Lee & Cowley (1993) for a pair of oblique modes 
alone. 

In deriving the above scaling, we have assumed that the non-equilibrium effect 
represented by d/dx l  appears at leading-order in the critical-layer equations. On the 
other hand, the viscous term, R-’u,,, is also a leading-order effect when it balances 
( U  - c + p ) a u / a ( .  This occurs when 

where the ‘Haberman parameter’ il is of order one (cf. Haberman 1972; Wu et al. 
1993). The critical layer is then both non-equilibrium and viscous in nature. The 
inviscid limit, R + a, can be immediately obtained by setting A = 0 in the analysis, 
while the strongly viscous case, il >> 1, is briefly discussed in $7.1. 

The basic flow U evolves on the very slow streamwise scale x3, and it is sufficient 
to approximate its profile at x3 by a Taylor expansion about x3 = 0: 

(2.17) 

In the following, it is understood that all mean-flow quantities are evaluated at x3 = 0, 
and that a prime denotes differentiation with respect to y .  
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3. Outer expansion and solution 

inviscid. The pressure p and velocity (u, u, w) of the disturbance are expanded as 
Outside the critical layers, the flow perturbation is predominantly linear and 

b (3.1) 

where 

a d = a O - a ,  ~ s = a f J + ~  ( 3 4  
are the streamwise wavenumbers of the forced difference and sum modes respectively. 
The amplitude parameters 6 and f are specified by (2.14) and (2.15), but are here 
retained in primitive form so that the meaning and the origin of different terms in 
the expansion become more apparent. 

The eigenfunction q5a(y) satisfies Rayleigh's equation 

and boundary conditions? 

4 a + 0  as y - + f o o .  (3.4) 

For the amplitude A(x1) to be precisely defined, it is also necessary to impose a 
normalization condition on 4a, say 4 a ( y ~ )  = 1 for some specified yo. Likewise, f$b(y) 
satisfies 

and the same boundary conditions as 4a, plus a suitable normalization condition. 
As noted in the previous section, phase-locking is guaranteed when a2 + p2 = a;, in 
which case we may take (bb = 4a. However, we shall proceed for the more general 
case. 

Let q = y - yj, where yj  is the jth critical level at which U = c. Then as y + &O, 

f$a-bf[I+pjylog~qII + a f ~  +0(q210g~q~)  7 (3.6) 

4 b  - h f [ l  + Pjq log IVll + + 0 ( y 2  log Iql) , (3.7) 
where a:, bf, Zf and 6: are constants, and 

(3.8) 

From an analysis of the critical layer (see the next section) it is readily shown that 

(3.9) b t  = b r  bj , 6t = 67 _= 6 .  
J J  J J J '  

t These boundary conditions are appropriate to a free shear layer. For a wall shear layer, we 
require 4 J O )  = 0, 4u + 0 as y + co. 
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The oblique-mode correction ua2 satisfies the inhomogeneous Rayleigh equation 

(3.13) 

(3.14) 

The expressions for Tj and Sj are the same as for r j  and sj except that a and A 
are replaced by a. and B respectively. Multiplying both sides of (3.10) by 411, and 
integrating from -cc to a, we obtain the solvability condition for v,2: 

2ia dA 1 dA 
[ ia dxl [bj(cT - c;) - (a+& I J  - a:&) = --J1 + -- + SA ] J2 . (3.15) ' 1  c d x l  

Here the sum is over all critical layers; J1 and 52 are constants defined by 

(3.16) 

and FP denotes the Hadamard finite part. Similarly, the corresponding equation for 
Ub2 yields the solvability condition 

where 

The forced difference mode at O(e6p-3) satisfies Rayleigh's equation 

(3.18) 

(3.19) 
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Equation (3.19) is to be solved subject to the boundary conditions 

udl -+ 0 as y -+ f c o ,  (3.22) 

together with the inhomogeneous jump conditions (4.18) which will be derived in 
the next section. It is being tacitly assumed that the forced difference mode is not 
in resonance with an eigenmode of the system, so that the problem specified by 
(3.19)-(3.22) and (4.18) does indeed have a solution. A detailed discussion of this 
point is postponed to $5.3. 

The leading-order pressure of the planar mode is given by 

Pbl = ia&'[u$b - ( u  - C ) $ b , y I B ( X l )  , (3.23) 

and as q -+ 0, 

(3.24) 1 - r -  
Pbl - pbl(x1) + o(q2) , with p b l ( X 1 )  = ia; UjbjB(X1) . 

Likewise, for the oblique mode and the forced difference mode, we have 

pal = ia-' cos2 6 [ U 4 ,  - ( U  - C ) $ ~ , ~ ] A ( X ~ )  , 
P d l  = ia,' cOs2 6 d  [ u U d 1  - (u  - c)udl,y] , 

(3.25) 

(3.26) 

where we define 

6 = tan-'(p/a) , 6 d  = tan-'(p/ad) . (3.27) 

As q -, 0, 

Pal  - Pal(x1) + o(q2),Pdl Pdl(x1) + o(q2), 
with 

p,l(xl) = ia-'Ujcos2 O b j ~ ( x l )  , pdl(x1) = ia;'U;cos2Od D ~ ( X ~ )  . (3.28) 

The leading-order streamwise and spanwise velocities of the oblique mode are given, 
as in Wu (1992), by 

(3.29) 

(3.30) 

and as q -+ 0, 

sin2 6 bjA(xl)  sin 0 cos 0 bjA(xl)  
Ua1 - - +... , wal - - +... . (3.31) 

iaq iaq 

Likewise, the corresponding quantities for the forced difference mode are found to 
have the asymptotic behaviour 

sin2 6 d  D ~ ( x ~ )  sin 6 d  cos 6 d  D j ( x l )  
udl - + . a .  , wdl - + ... . (3.32) 

For both the oblique eigenmode and the forced difference mode, the streamwise and 
spanwise velocities exhibit a pole type of singularity. Other terms in the expansions 
(3.1) are not needed in the present study. 

iadq iadq 



344 X .  Wu and P. A.  Stewart 

4. Inner expansion 
Within the j th  critical layer, the appropriate local transverse coordinate is 

Y = (Y - Y j ) / p  . (4.1) 

The expansion takes the following form: 

vaO(x1) = Aj(x1) bjA(x1) VbO(x1) = Bj(x1) gjB(x1) , (4.3) 

vdO(x1) = Dj(x1) . (4.4) 
Strictly speaking, the expansions (4.2) also contain terms in logp, but these play a 
purely passive role and have been suppressed. 

The leading-order streamwise and spanwise velocity components of the oblique 
mode satisfy 

(4.5) 

(4.6) 

(4.7) 

Lua, + U(iVao(x1) = -iapal(xl) 9 L w a o  = iPpal(x1) , 

a 2  a 
ax1 ay 

U,O = -Ui sin2 0 QLo) , W,O = -Uj sin 6 cos 6 Qko) , 

where we define 

La = - + ia(UiY + S) - ir . 

It follows that 

where 

The leading-order velocity components of the difference mode, UdO and Wdo, are 
driven by the pressure p d l .  They are much larger than the locally forced solutions 
u d 1  and Wdl. We find that 

L a d u d 0  + ujvdO(x1) = -iadPdl(xl) > LadWdo = -iPpdl(xl) , (4.9) 

(4.10) 
and thus 

where 
ud0 = -CT~ sin2 od Q!) , wd0 = Uj sin 0 d  cos 0 d  ~ f "  , 

(4.11) 
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The second-order difference-mode terms are obtained from 

Cp1 udO,xl + iadudl + vd1,Y + ip wdl = 0 , 

= iaUy sin2QBj QL1)* - UyY Dj + . . . , 

(4.13) 

Lad u d ,  + uj vdl = - vb0 uio,y - uy Y vdo + . . . 
(4.14) 

(4.15) 

where the first term on the right-hand sides arises from the interaction between the 
planar and the oblique modes. It follows that 

L.ad I /d l ,YY = itXoE'U7 sin28Bj(xl)QL2)* + iadUyDj(X1) + . . . , (4.16) 

i,, wdl = -vbOwao,y + . . . = ib-'a2Uy sin2dBj Q L ~ ) *  + . . . , 

which may be solved by means of a Fourier transform with respect to Y to give 

Matching vd1,y with the outer solution gives 

v'! 
C+ - C: - n i&Dj(xl) = NjFj(xl) , 

I U;l J J 

where the inhomogenous forcing term on the right-hand side is specified by 

N j  = 2n ia;'a2a; sin2QUjlUjlbjbj , 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

Later, we shall also require the solution for the spanwise velocity, which is obtained 
from (4.15) as 

The continuity equation (4.13) then gives the streamwise velocity: 

Likewise, the leading-order sum mode satisfies 

from which we obtain 

i,I/sl,yy = iaoa'U; sin28 QL') . (4.26) 
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Equation (4.26) can be solved by the same method as for Vd1 to give 

while (4.25) gives 

(4.28) 

It follows from (4.23) that 

= --(iaS)-'(Vs1,, - iPW,,) . (4.29) 

We note that, unlike the forced difference mode, the leading-order sum mode decays 
(algebraically) as Y + +a, and hence does not affect the flow outside the critical 
layers. It can be shown (although we do not present the calculation) that the same 
is true of the second-order sum mode ( Us2, VS2, Ws2). This is why the outer solution 
contains the difference mode at O ( e 6 ~ - ~ ) ,  while the sum mode is smaller, of O(e6p-'). 

The mean-flow distortions UM and WM satisfy 

[A - 2 x 1  WM = -[Va0W,b,, + c.c.] = ip-'a2uy sin2 6AjQi2)* + C.C. , (4.30) ax, aY2 

and are given by 

uM = iauj2 s i n 2 @ ~ ~ ~ e - " i  (c3+3c2q)e ia(Uyy+s)cA. j ( xl-q)Aj*(xl-q-[)dq d l  + C.C. , 

WM = (a /p)uM . (4.31) 

For the streamwise and spanwise velocities of the oblique harmonic, e2i(ac-bz), it 
suffices to note (from the continuity equation) that 

W a a  = (a/P)Uaa . 

It turns out that this harmonic does not contribute to the nonlinear terms in the final 
amplitude equations. 

We turn now to the oblique-mode corrections Val and Va2. They are found to 
satisfy 

i,~,,,,, = iaUyAj(xl), (4.32) 

L v a 2 , ~ ~  = [i~(a)Val  + L(a,P)Ajl + No2 > (4.33) 

where we have defined 



Interaction of phase-locked modes 347 

The final term of (4.33) represents the interaction between the planar wave and the 
forced difference mode (ad,jj,c), and is given by 

Na2 = iVbo(aU&-jjW~o)yy = iaoa~u:jsin28dBjQji2)*+ ... . (4.36) 

Solving (4.32) and matching Val,y and Val with the outer expansion, we obtain the 
jump conditions 

af - a; = TC ipjbj sgn( u;) , df - d; = -TC irjbj sgn( uj) . (4.37) 

After solving for Va2,yy, we obtain 

cf - C; FP [ Va2,y ( Y  = 00) - Va2,y ( Y  = -a)] 
= TC i sgn( uj)(aTrj + pjdf + bjsj) 

+271 ia;2a2aiUjlUjl . (4.38) 

Finally we consider the planar mode. For the purpose of deriving the amplitude 
equation, it suffices to seek the solution for Vb1 and Vb2 only. We find that Vb1 satisfies 
the equation 

(4.39) 

where 
i, Vb1,yy = iaoUyBj + iaolibl,r , 

Rbl = 2 ia0 UdO UaO + VdO Ua0,Y + VaO ud0,Y - (4.40) 

Solving (4.39) and matching Vb1,Y and Vbl with the outer solution gives the jumps 

l i f - L i ; = ~ ~ i p ~ ? l ~ s g n ( u j ) ,  df-d;=-nii .b.s j - j  g n U .  , (4.41) 

The forcing term iaoRbl,y in (4.39), which represents the interaction of the oblique 
mode with the leading-order difference mode, makes no contribution to these jumps, 
unlike the corresponding terms in the oblique-mode equations (4.33). This accounts 
for the different scaling for the amplitudes of the planar mode and the oblique mode, 
as was noted in 52. 

It remains to determine 

(4.42) 

(4.43) 
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In calculating the jump in V$!y, it is helpful to make the substitution identified by 

(4.46) 

Wu (1995), namely, 

where 
%,)YY = v L l Y Y  + vb(”IYy , 

(4.47) 

By means of Fourier transform with respect to Y ,  it is now straightforward, though 
lengthy, to solve for Vb(;lyy and so find the jump in Vj;ly. The jump in V j k  can be 
obtained directly from (4.47) by integration by parts. After a tedious calculation, we 
have 

E; - E; = .n i sgn(Uj)(afFj + + b j ~ j )  

+ 271a31 u;13 sin20 l F b ( c , q  I nj)Aj(xl-5)Bj(xl-5-q)AS(xl-vs5 -vOq)d< dq 

+ 2na3/UjI3 s i n 2 6 1 F c ( t 7 q  I Aj)Bj(x~-~)Aj(x~-~-q)A~(x~-vs~-q)dt dy . 

(4.52) 

The kernels K b  and K ,  are rather complicated, and are given in Appendix A. But in 
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the inviscid limit (A = 0), they revert to a very simple form, namely 

Kb(5 ,  y 10) = cos2e r(5 + y) (VO< + v d y )  3 

Kc(<, y 10) = v; cos28 5 3  . 
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(4.53) 
(4.54) 

5. Evolution equations for the amplitudes 
5.1. Case I: the planar wave interacts with a single oblique mode 

The jumps (4.37) and (4.38) are now substituted into (3.15) to give the amplitude- 
evolution equation for a single oblique mode : 

where the sum is over all critical layers. The Dj are specified by (3.19)-(3.22) and 
(4.18), while the coefficients IC, and Y(j) are given by 

where 

where 

and 

In order to match with the upstream linear stage, the amplitudes A and B should 
satisfy the 'initial' conditions (see e.g. Goldstein & Leib 1989): 

A + AOeKaxl , B --+ BOeKbX1 as x1 --+ -cc , (5.7) 

where the complex numbers A0 and BO characterize the initial amplitudes of the 
oblique and the planar modes respectively. 

5.2. Case 11: the planar wave interacts with a pair of oblique modes 
As we have emphasized, the phase-locked mechanism is essentially a binary modal 
interaction, between a planar mode and a single oblique mode. Nevertheless, it can 
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be extended to the case where the planar wave interacts with a pair of oblique waves 
at equal and opposite angles to the streamwise direction. The disturbance then takes 
the form 

eB(xl)eiwoc + GA(xl)[ei("c+PZ) + e i ( a ~ - ~ z ) ]  + C.C. + . . . . (5.8) 
Here for simplicity, we have assumed that the two oblique modes have the same 
amplitude. In principle, it is straightforward to allow for unequal amplitudes, but 
the algebra is considerably more complicated. For the equal-amplitude case, the 
analysis is largely the same as in the previous sections, and will not be given in detail. 
The major difference is that the self-interaction between the oblique modes produce 
an additional spanwise-dependent mean-flow distortion and a harmonic component 
proportion to exp(2i.r). These in turn interact, at the cubic level, with the leading- 
order oblique modes, to contribute an extra nonlinear term to the amplitude equation 
for the oblique modes. This term has been calculated by Goldstein & Choi (1989) 
in the inviscid limit and by Wu et al. (1993) with the inclusion of viscosity. The 
amplitude equation (5.1) is thus modified to 

where 

Y?) = 471 ia4 sin28h3lbjl2~~~~jl3/cs(cc) , (5.10) 

and the kernel K ,  is given in Appendix B. The governing equation for the planar 
mode is 

which differs from (5.4) only in that 

rf) = 2e j )  = 471 igOa3 ~ i n ~ e j b ~ I ~ ~ ~ l U ~ ~ ~ / ~ , ( c c o )  . (5.12) 

This is because each of the two oblique modes makes an equal contribution to the 
amplitude equation. In what follows, we shall concentrate on (5.9) and (5.11); the 
equations for a single oblique mode can be recovered as a special case, with the YLj) 
set to zero and the Y j )  replaced by half their value. 

5.3. Solvability condition for  the forced diference mode 
We recall that the Dj  in (5.1) or (5.9) are obtained as 

Dj(X1)  = vdl(x1,yj) , (5.13) 

where vd1 is a solution of the Rayleigh equation (3.19) for the forced difference mode, 

(5.14) 
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with the jump conditions 

(5.15) 

and boundary conditions 
vd1 -+ 0 as y + +a . (5.16) 

Here Nj and Fj are specified by (4.19)-(4.20). In the foregoing analysis, it has been 
tacitly assumed that the problem specified by (5.14)-(5.16) has a solution. This is 
indeed the case if (ad, j, c) is not an eigenmode of the system, i.e. there is no non-trivial 
solution of the Rayleigh equation 

(5.17) 

with 

Suppose, on the other hand, that the homogeneous problem (5.17)-(5.18) does have 
a solution, with 

4 e  - fj[l + pjq log lql] + eFq + O(q2 log Iql) as q y - y j  -+ k0 . (5.19) 

By multiplying (5.14) by 4e and integrating over y, we obtain the solvability condition 
for 4d, namely 

In this case, vd l  plus an arbitary multiple of satisfies (5.14) and (5.15). In order for 
Udl and the amplitude of the oblique mode(s) to be precisely defined, we should also 
impose a normalization condition on odl ,  say 

(5.21) 

A case in point arises when the oblique mode is the subharmonic of the planar 

t ~ = i a o ,  P = & x ,  0 = 6 0 " ,  (5.22) 
The solvability condition 

C bjNjFj(x1) = o , (5.23) 

which can be interpreted as cancellation of the quadratic subharmonic resonance. For 
asymmetric flows, or for varicose modes in symmetric shear flows, (5.23) cannot in 
general be satisfied, and it must be assumed that 0 # 60". The subharmonic resonance 
may then be of particular importance because it requires an O(,u4) magnitude of the 
planar mode (see e.g. Wu 1992, 1995), much smaller than that for the phase-locked 
interaction to occur. For sinuous modes in a symmetric shear flow, the solvability 
condition (5.23) is satisfied when 6' = 60" and consequently subharmonic resonance 
is inactive among such modes. On the other hand, there may be some value of 

mode, that is, when 

since then ad = a, and (5.17)-(5.18) is satisfied by $e = 

(5.20) thus becomes 

j 
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8 for which the difference mode coincides with a varicose eigenmode, as will be 
demonstrated in $6 for a particular wake profile. In that case, the appropriate 
solvability condition cannot be satisfied. It is then necessary to treat the (varicose) 
difference mode on the same footing as the two sinuous modes, and a three-mode 
'resonant-triad' interaction ensues. This is explored in detail by Wu (1996), who 
shows that such a 'mixed-mode' triad can arise in a wide variety of wake profiles. 
Like the subharmonic triad, it comes into play when the two-dimensional mode 
has an magnitude of O(p4),  and so provides a possible mechanism for the selective 
amplification of a narrow band of oblique modes. However, the non-resonant phase- 
locked interaction can lead to the enhanced growth of other oblique modes once the 
magnitude of the planar mode rises to O(p7I2). Since it is not restricted to 0 = 60", 
it may help to explain why a broad band of three-dimensional disturbances can be 
observed to develop rapidly. 

5.4. SimpliJied form of the amplitude equations 

In general, the evolution of A(x1) and B(x1) is governed by (5.9) and (5.11) together 
with (5.14) and (5.15); these equations must be solved simultaneously to determine 
the development of A(xl) ,  B(x1) and the Dj(xl). However, considerable simplification 
is obtained if all the critical layers have the same value of A j ,  as defined in (4.8), so 
that the F j  are all equal. This happens, for example, 

(a) if there is only one critical layer (as will be the case if the basic flow profile is 
monotonic), or 

(b)  if the basic flow profile is symmetric, with two critical layers (as for a plane 
wake or jet), or 

( c )  in the inviscid limit, 3, = 0. 
From now on, except in $7.1, we shall always make this simplifying assumption, and 
denote the common values of A j  and F j  by A and F .  We can then write 

vdl = F(xl )$d(y) 9 (5.24) 

where $d satisfies 

(5.25) 

Note that D, = F(Xl)$d(yj). After substituting it into (5.9), the amplitude equation 
for the oblique modes becomes 
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Note that equation (5.25) with the jump condition (5.26) can be solved independently 
of A(x1) and B(xl) to determine $d(yj) and hence Y. 

The governing equation (5.11) for the planar mode also simplifies, to 

where Kb is specified by (5.5), and 

(5.30) 

As before, the equations for a single oblique mode are recovered by dropping the last 
term of (5.27) and replacing the coefficient Yp in (5.29) by Y, = Yp/2. 

We end this section by making the rescaling 

x1 = (x + xO)/Kbr , (5.31) 

A(xl) = A O e K ~ O + i ~ K b t X 1  A(%) , B(x1) = Boeao+iKbiXIB(X) , (5.32) 

where Kbr and Kbi are the real and imaginary parts of Kb, and 

20  = In Kbr ~ ~ 0 ~ - 1 ~ ~ ~ - 1 ' 2 ]  , K = ( K a  - igxbi)/Kbr . [ ' I 2  
(5.33) 

After the rescaling, the amplitude equations (5.27) and (5.29) and upstream conditions 
(5.7) become 

A + e K X ,  B + e a  as x + - - o o ,  (5.36) 
where 

and 
ei4 = r/lrl , Fa = ra/lrpl , i;', = rp/lrpl , si = n / ( ~ ~ b r ) ~  , (5.37) 

(5.38) 

For a particular set of modes, the solutions of (5.34)-(5.36) depend only on two (real) 
parameters: 1, the rescaled viscous (Haberman) parameter, and xo, a measure of 
the initial amplitude of the oblique modes relative to that of the planar mode. The 
evolution differs from that of a resonant triad in that it does not depend on the initial 
phase difference between the planar and the oblique modes. This feature might be 
used to distinguish the two mechanisms experimentally (see 98). 

2 = i&*u? , XO = { K z - 6 / r p l / l q y } - -  IAoI2 , y = Kar/Kbr . 
IBOI2Y 
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6. Application to a plane wake 
From now on, the analysis will be specialized to the case of a symmetric plane 

wake. In such a flow (and indeed in any symmetric shear flow) subharmonic resonance 
is possible among varicose modes (v antisymmetric), but not among sinuous modes 
(v symmetric). Nevertheless, in the experiments of Corke et al. (1992), sinuous 
subharmonics excited in conjunction with a two-dimensional mode were observed 
to grow much faster than predicted by linear theory. Mallier (1995) suggests that 
the varicose modes might grow rapidly as a result of subharmonic resonance, and 
that once sufficiently large, they could enhance the growth of the sinuous modes. 
However, since varicose modes have much smaller linear growth rates than their 
sinuous counterparts, it seems doubtful whether such a scenario would occur in 
practice unless the varicose modes were preferentially excited by some means. Here 
we seek an alternative explanation in terms of a phase-locked interaction involving 
sinuous modes. 

X .  Wu and P. A.  Stewart 

The basic-flow profile is chosen to be 

u = UO - sech2y , (6.1) 

where Uo is the (scaled) free-stream velocity. For neutral sinuous modes (Drazin & 
Howard 1966), 

112 - 2 a0 = (a2 + p') - 2 , c = UO - , $a = $b = sech2 y . (6.2) 

The two critical levels are located at y1,2 = 

inflexion points of U .  We thus have 
ln(2 + a), which coincide with the 

It follows from (5.3), (5.6) and (5.5) that 

Substitution of the above values into (5.2), ( 5 . 9 ,  (5.10) and (5.12) yields the values of 
IC,, ICb, Ya and Y,. 

The determination of the remaining coefficient Y requires the solution of the dif- 
ference mode problem (5.14)-(5.25), which in general has to be obtained numerically. 
However, in the special case of an oblique subharmonic, that is, a = ad = 1, f i  = 4, 
8 = 60°, the solution of (5.25) which vanishes as y -+ kc0 can be expressed in the 
analytic form 

(6.6) 
where 

$d = $f(Y) + K sech2y 7 

y1sech2y, Y > Y l ;  
$f = y2 sech2y[i sinh 4y + 4 sinh 2y + 6y] , -yl < y < yl ; (6.7) { y3sech2y, Y < - Y 1 *  

The constants Y k  are obtained from the jump conditions (5.26). Noting that 
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we find that 
rci 
343 81 
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The use of the normalization condition (5.21) determines K = 0. It follows that +d is 
varicose in character (i.e. odd in y). The coefficient I" in (5.27) is found to be 

For a general value of 8, we may write 

(6.10) 

(6.11) 

where $ ( y  18) is the solution of 

(6.12) 
) $ =  ( 1 6 ~ i n ~ ~ - 6 s e c h ' y  8 

U - C  

$(o) = o ,  [$y l : f  = 1 ,  6 - t o  as y +co. (6.13) 

The values of I" depend, through cg,  on the choice of UO. Figure 2 shows I" plotted 
against 8 for Uo = 11/3, which is the value used in the numerical solutions to be 
presented in $7. We see that there is a critical value of 8 at which Y is infinite, namely 

ecrit = COS-'(0.875) = 290 . (6.14) 

For this value of 8 (which does not depend on the choice of UO), the difference mode 
coincides with a varicose eigenmode, since then 

c I i + p = 1 ,  (6.15) 

and (5.17)-(5.18) has the solution 

+e = sechy tanhy . (6.16) 

It is at once apparent that the solvability condition (5.20) is not satisfied since 
f l  = -f2, N1 = -N2, and F1 = F2. This is the case of 'mixed-mode' resonance 
mentioned at the end of $5.3, and requires a separate analysis (Wu 1996). Here, 
however, we shall restrict attention to the non-resonant interaction. In fact, our 
numerical results will be confined to the case of 8 = 60", which corresponds to the 
situation investigated experimentally by Corke et al. (1992). 

7. Study of the amplitude equations 
7.1. Strongly viscous limit: 2 + co 

If the initial disturbances are very small, nonlinear effects may become important 
further downstream and closer to the neutral station, so that the growth-rate pa- 
rameter p << R-1/3. In that case, non-equilibrium effects in the critical layer(s) are 
small compared to those of viscosity. The appropriate amplitude equations may be 
formally obtained from the foregoing analysis by taking the limit I. + co, where I. is 
the 'Haberman parameter' defined by (2.16). We return, for this subsection only, to 
the full equations (5.9)-(5.15). A procedure similar to that in Wu et al. (1993) shows 
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FIGURE 2. The coefficient Y as a function of 8,  for the plane-wake profile (6.1) with Vo = 11/3. 
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that (5.9)-(5.26) reduce to 
m 

- _  dA - K . A + ~ ~ Y / B I ’ A + I * / ~ Y , A ~  (A(xl -< ) I  2 d < + . . .  , (7.1) 
dxi 

where 

and Jd(y) is the solution of (5.25)-(5.26) with N j  replaced by N j / (  ui)2. 
For the case where the planar mode interacts with a single oblique mode, the 

integral term in (7.1) is absent, and Yp is replaced by ps = &/2. The parameter 1 can 
be rescaled from the equations by writing A = A5l6k + . , . , B = ilB + . . . , to obtain 

If Rey < 0 and ReYs < 0, equations (7.5) and (7.6) admit an equilibrium solution of 
the form 

where 
= koRei%X1 , B = BOReiWbXl , 

lkoI2 = -Rercb/ReE , 

] & I 2  = -Relc,/ReY, 

a, = (Reflmlc, - RelcImY)/Rey, 

cob = (ReEImlcb - RelcbImE)/ReE . 
When a pair of oblique modes is present, the appropriate rescaling is A = 12/3k+. . . , 
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B = LB + . . . , which gives 

(7.7) 

In this case, the feedback term cannot be retained in the leading-order equation. A 
discussion similar to that of Wu et al. (1993) indicates that the amplitude equations 
(7.5)-(7.6) or (7.7)-(7.8) break down when 1 = O(R1I2) because the non-parallelism 
is then a leading-order effect. Nevertheless, the appropriate amplitude equations for 
this new regime can be obtained by replacing the linear terms in (7.5) and (7.6) by 
( K ,  + pnxl) and ( K b  + PbX1) respectively, where Pa,b are some suitable constants; the 
nonlinear terms remain intact. 

7.2. 'Secondary-instability' stage, and eflect of initial amplitude 

The coupled amplitude equations (5.34) and (5.35) are formally derived by assuming 
6 - O(e6I7). If 6 << O ( E ~ / ~ ) ,  i.e. 1x01 << 1; then they reduce to 

- = B .  
dB 
dx 

(7.10) 

These equations show that the oblique mode(s) are influenced by the mutual inter- 
action even if it is infinitesimal, while the planar mode evolves according to linear 
theory, unaffected by the oblique mode. We shall refer to this regime as the secondary- 
instability stage, since it turns out that the planar wave is unstable to three-dimensional 
modes which share the same phase velocity. However, we should point out that the 
present secondary-instability analysis differs from that of Herbert (1988), where it is 
assumed that the planar wave is in (quasi-)equilibrium, or can be treated as such in 
an ad hoc manner, so that an eigenvalue problem can be formulated using Floquet 
theory. In the present case, the non-equilibrium nature of the planar wave is properly 
taken into account, and the secondary instability is an initial-value problem as (7.9), 
(7.10) and (5.36) indicate. 

As in Goldstein & Lee (1992), a solution of (7.9) and (7.10) subject to the initial 
condition (5.36) can be found in the form 

with the a, ( n  = 1,2,. . .) given by 

where 

(7.11) 

(7.12) 

(7.13) 

(7.14) 
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Note that I ,  = 1 for the inviscid case (2, = 0), and that for any value of Ad, 
X .  W u  and P. A. Stewart 

~ , ( p )  = 1 for In + pl >> ( ~ d ) " ~  . (7.15) 

Application of Laplace's method (e.g. Bender & Orszag 1978) to the series in (7.11) 
gives, for 161 < n, 

A(%) ,,, A, exp [ke2"' + 3 ti% - 3 i ti$] as R ---f GO , (7.16) 

where 

For 6 = fn, that is, for Y real and negative, the corresponding large-Z result is 

A(%) - A, (exp [Le2'/' + +ti% - + iti$] + exp [L"e2'/' + +ti% + 3 iti$]) . (7.18) 

This implies that for any value of 6, that is for any (non-zero) value of the coefficient 
Y, the oblique mode grows super-exponentially. The planar mode acts as a 'catalyst' 
to enhance the growth of the oblique mode. 

The amplitude of the forced difference mode is characterized by 

(7.19) 

Substitution of (7.11) into (7.19) yields a power-series solution for F(Z). After a 
similar analysis as was used for (7.11), it is found that (for 161 < n) 

F ( x )  - F,exp [L*e2'I7 + + ( K *  + I)R + +(I + ti*)i$] as % + G O ,  (7.20) 

where 

(7.21) 

As a result of such rapid growth, the amplitude of oblique waves may eventually 
overtake that of the planar wave. Depending on the initial magnitude of the oblique 
modes as well as on the nature of the critical layers, several possibilities can occur. 

(a) If the oblique modes are algebraically small initially, their magnitude quickly 
increases to O ( C ~ / ~ )  so that the evolution soon enters the fully coupled rkgime. In 
this case the fully coupled equations (5.34) and (5.35) are uniformly valid in the two 
regimes. 

(b) However, if the initial magnitude of the oblique modes is exponentially small 
and the critical layers are regular, then the two-dimensional mode can become 
nonlinear, that is, described by strongly nonlinear critical-layer equations such as 
those of Goldstein & Hultgren (1989), before the oblique modes can produce a 
feedback effect. Finally the disturbance may enter a fully coupled stage in which 
both the planar and the oblique modes evolve over an inviscid spatial scale. Because 
the three-dimensional modes have a smaller growth rate in the linear stage, such a 
scenario is likely to occur in experiments. We are currently investigating this issue. 

(c) If the oblique modes are exponentially small initially, but the critical layers 
are singular, then the secondary-instability stage is followed by one in which the 
development of the planar mode is governed by an evolution equation of Hickernell 
(1984) type. Because the amplitude of the planar mode can either develop a finite- 
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distance singularity or equilibrate (see e.g. Wu & Cowley 1995), the subsequent stage 
may be different from that for a regular critical layer. 

7.3. Fully coupled stage: a finite-distance singularity 
It appears that the solution to (5.34) and (5.35) can develop a finite-distance singu- 
larity, say at x,, of the following form: 

m m  

D22(~1, w 2 )  = / 1 t3( 1 +5)-(7/2fi'4'Z)( 1 +5 + q ) - ( 3 + i W 1 ) (  1 +v,( +v)-(~- i W ~ )  d< dq , 

D12(~1) = q I O)[( 1 + <)( 1 + 5 + q ) ] - ( 3 + i W L ) (  1 + 25 + q)- (3- iW1)  d5 dq , 

0 0  

0 0  

D21(wI,w2) = / T ? ( c  + q ) ( V O t  + v d y ) ( l  + 5 + Y])-(7/2+iWz) 
0 0  

x( l  + 5)--(3+ivl)(l + v,5 + V ~ ~ ) - ( ~ - ' W ~ )  d5 dy , / 

(7.22) 

1 

where ao, bo are complex in general, while w1 and ~2 are real. Substitution of (7.22) 
into (5.34) and (5.35) yields 

(7.23) 
(7.24) 

where Dl l ,  etc. are defined by the following convergent integrals: 

7.4. Numerical study of the amplitude equations 
We now present numerical solutions of the (rescaled) amplitude equations (5.34) 
and (5.35). The finite-difference method employed is an Adams-Moulton (implicit) 
scheme with sixth-order accuracy. The kernels K ,  K,, etc. are evaluated numerically 
by Simpson's rule. As in Wu et al. (1993) and Wu (1995), the integrals over the infinite 
domains (see (5.34), (5.35)) are approximated by those over large but finite domains, 
the sizes of which are determined by trial and error. 

The coefficients that we shall use are those calculated analytically in $5 for sinuous 
subharmonics in the plane-wake profile (6.1). They depend on UO, which in turn is 
related to the velocity deficit. This changes considerably from the near field to the 
fully developed similarity region (see e.g. Sat0 & Kuriki 1961; Sat0 & Saito 1978). 
In the following calculations, we choose UO = 11/3, which corresponds to a velocity 
deficit of 0.272, very close to that in the experiments of Corke et al. (1992). We 
also note that in most experiments, the velocity deficit in the far wake is about this 
size. The other two parameters are xo and 2, which represent the initial magnitude 
of the oblique modes and the effect of viscosity (or Reynolds number) respectively. 
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FIGURE 3(a,b). For caption see facing page. 

We first study the amplitude equations governing the ‘secondary-instability’ stage, 
i.e. (7.9) and (7.10). (The results can also be obtained from the series solution (7.11)- 
(7.14), which provides a useful check on the numerical scheme.) The development of 
the oblique wave is shown in figure 3(a) for four different values of 2. We find that 
the linear growth rate of the oblique mode is only about one-tenth that of the planar 
mode. However, its growth is soon significantly enhanced through phase-locked 
interaction with the planar mode once the latter has attained a certain magnitude. 
The phase-locked interaction finally leads to the super-exponential growth in the 
amplitude of the oblique mode. This implies that even if the oblique mode is very 
small initially, it may eventually overtake the planar mode. Viscosity has a stabilizing 
effect in that it postpones the action of the phase-locked interaction, but it cannot 
prevent the ultimate super-exponential growth. Figure 3(b) shows the instantaneous 
growth rate of the oblique mode, Re(;i’/A). It is interesting to note that in the inviscid 
and moderately viscous case, the growth rate exhibits a step-function-like behaviour. 
That is, once the phase-locked interaction comes into play, the growth rate ‘jumps’ 
to a higher value and remains more or less constant for some distance. Over this 
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FIGURE 3. (a) LnlAl us. %. The dotted lines represent the large-distance asymptotic behaviour (7.16) 
and the dashed line the exponential growth. ( b )  The instantaneous growth rate Re(;i’/A) us. X. 
The dotted line represents the asymptotic result. (c )  The wavenumber correction Im(A’/A) us. %. 
The dotted line represents the asymptotic result. ( d )  Lnlbl us. 1. The dotted lines represent the 
large-distance asymptotic behaviour (7.20). (i) 2 = 0, (ii) 2 = 5, (iii) 2 = 15, and (iv) 2 = 50. 

range, the amplitude grows almost exponentially but with growth rate about twenty 
times the linear value, or twice the growth rate of the planar mode. For the slightly 
viscous case, 3 = 5.0, it can be seen that the immediate effect of the phase-locked 
interaction is to cause a transient decay before enhancing the amplification. These 
findings are in agreement with the experiments of Corke et al. (1992), who observed 
the oblique waves to decay slightly in the initial stage of the interaction, and then 
evolve exponentially with a growth rate comparable to that of the planar mode. The 
step-function-like behaviour of the instantaneous growth rate may be the reason why 
Corke et al. were able to fit the nonlinear development of the oblique wave with an 
exponential function. As well as causing a super-exponential growth in the amplitude, 
the phase-locked interaction induces a wavenumber correction, Im($/A), as shown 
in figure 3(c). This may lead to an appreciable change in the effective wavenumber of 
the disturbance. Indeed, the simultaneous modulation of amplitude and wavenumber 
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FIGURE 4. (a) LnlAl us. X and ( b )  lnlBl us. j(- for 2 = 0 :  (i) xo = 0.1, (ii) xo = 0.05, (iii) xo = lop2, (iv) 
~0 = (v) xo = 0. The dotted lines represent the local singular solution (7.22), and the dashed 
line the exponential growth. 

is characteristic of transition in a plane wake and in a mixing layer (Miksad, et al. 
1982; Miksad 1972). 

Our analysis shows that the induced difference mode has a much larger magnitude 
than that of the sum mode. Moreover, a comparison between (7.16) and (7.20) 
indicates that the difference mode ultimately grows more rapidly than the primary 
oblique modes by a factor of e"'. The development of the difference mode is depicted 
in figure 3(d) .  

Figures 3(a)-3(d) all show that as X + +a, the numerical solutions asymptote 
to the predicted super-exponential growth. Since the growth of the planar mode 
is still only exponential, this terminal behaviour could have been obtained from 
a secondary-instability calculation in which the planar mode was treated as being 
in equilibrium. However, such an ad hoc analysis could not capture the intriguing 
transient behaviour, which, as we have noted, is in broad agreement with experimental 
observations. 

We now study the amplitude equations governing the fully coupled stage, which 
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FIGURE 5. (a)  LniAi us. X and ( b )  lnlBl us. X for xo = 0.01: (i) 2 = 0, (ii) 2 = 5, (iii) 2 = 30, 
and (iv) 2 = 100. The dotted lines represent the local singular solution (7.22) and the dashed line 
exponential growth. 

can come into play either as a result of the super-exponential growth, or when the 
oblique modes are preferentially excited by some means. We first consider the case 
where a planar mode interacts with a single oblique mode. The rescaled equations 
for this case correspond to (5.34) and (5.35) with Ya set to zero, and Fp replaced by 
Fp/2 .  In the inviscid limit (2 = 0), the development of the oblique and planar modes 
is displayed in figures 4(a) and 4(b) respectively for different sizes of xo. The curve (v) 
corresponds to xo = 0, and is included as a reference. It is seen that for any non-zero 
xo, the amplitudes of both the planar and oblique modes develop a singularity within 
a finite distance due to the two-way coupling between them. For small xo (see e.g. 
curves (iii) and (iv) in figure 4a), the oblique-mode amplitude follows curve (v) over a 
considerable distance, indicating that the system experiences a prolonged secondary- 
instability stage before terminating in the finite-distance singularity. For relatively 
large XO, the secondary instability stage is by-passed, as shown by curves (i) and (ii). 
This is because in this case, the initial amplitude of the oblique mode is large enough 
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FIGURE 6. LnlAl (curve a) and lnlBl (curve b)  us. R for xo = 0.01 and 2 = 5. The dashed line 
represents the ‘secondary-instability solution’ and the dotted lines the exponential growth. 

to cause the planar mode to deviate from exponential growth at the beginning of 
the interaction (see e.g. curves (i) and (ii) in figure 4b), and this in turn affects the 
development of the oblique mode itself. 

In figure 5(a,b), we plot the development of the oblique and planar modes for 
different sizes of 1. It is apparent that viscous effects postpone the formation of the 
finite-distance singularity. However, viscosity can neither eliminate the singularity, 
nor alter its final structure, no matter how large the value of 2. 

In order to illustrate the roles of the phase-locked modal interaction and the cubic 
feedback interaction, the amplitudes of the oblique and planar modes are plotted 
together in figure 6. Four distinct stages can be identified. Up to L is the linear stage 
where no appreciable interaction takes place, and so the modes evolve exponentially. 
From L to S, the oblique mode departs from exponential growth, and follows the 
secondary-instability development represented by the dashed curve. The planar mode 
still follows the linear theory closely up to S, indicating that the feedback effect of the 
oblique mode on the planar mode is negligible. Thus the evolution between L and S 
may be regarded as a secondary-instability stage. Starting from S, the oblique mode 
becomes sufficiently large to produce a feedback effect on the planar mode, causing 
the latter to deviate from linear growth. However, this deviation is not immediately felt 
by the oblique mode, which continues to follow the secondary-instability development 
up to F ,  i.e. it evolves as if the planar mode were still growing exponentially. Finally, 
the amplitude of the oblique mode departs from the secondary-instability growth (the 
dashed line), and soon a finite-distance singularity is formed. This last regime is the 
fully coupled stage. 

We now solve the full equations (5.34) and (5.35) for the case where a planar mode 
interacts with a pair of oblique modes. The development of the disturbance in the 
inviscid limit is shown in figure 7(a,b) for four different values of X O .  For small but non- 
zero xo (e.g. curve iii), the evolution of the oblique modes overlaps that for xo = 0 over 
a considerable distance, implying that the oblique modes evolve through the linear 
and secondary-instability stages and finally terminate in a finite-distance singularity. 
The singularity has essentially the same structure as that for a single oblique mode, 
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FIGURE 7. (a) LnlA us. X and (b )  lnlB us. X for 2 = 0: (i) xo = lop3, (ii) xo = lop4, (iii) xo = lop5, 
and (iv) xo = 0. The dotted lines represent the local singular solution (7.22), and the dashed line 
the exponential growth. 

although here the interaction between the oblique modes makes an extra contribution 
to its formation. For moderately large xo (curve ii), the oblique modes do not evolve 
through a well-defined secondary-instability stage although the planar mode closely 
follows the linear theory over most of the evolution distance (see curve (ii) in figure 
7b) .  The reason for the absence of such a stage is that at the end of the linear stage, 
the oblique modes have become sufficiently large that the phase-locked interaction 
and the self-interaction are comparable in strength. For even larger xo (curve i in 
figure 7a),  the self-interaction comes into play immediately after the linear stage and 
subsequently dominates. The secondary-instability stage is thus completely by-passed. 
However, given that the oblique modes have a much smaller linear growth rate, such 
a scenario is unlikely to occur unless they are preferentially excited. 

Finally, as in the case of a single oblique mode, viscosity acts to delay the occurrence 
of the finite-distance singularity. This is demonstrated in figure 8(a,b). 
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FIGURE 8. (a) LnlAI us. X and (b)  lnlsl us. R for xo = lop5: (i) 2 = 0, (ii) 1 = 5, (iii) 2 = 50, and 
(iv) 2 = 200. The dotted lines represent the local singular solution (7.22) and the dashed line the 
exponential growth. 

8. Conclusions and discussion 
This paper has studied the interactions between a planar mode and one or more 

oblique modes which share the same phase speed. This phase-locked modal interaction 
represents a new mechanism that can induce rapid growth of three-dimensional 
disturbances. Specifically, it is found that once the planar mode has attained a certain 
magnitude, it promotes enhanced, and ultimately super-exponential, growth of the 
oblique mode(s), As a result, the amplitude of the oblique mode(s) may soon overtake 
that of the planar mode, and the disturbance can evolve to a 'fully coupled' stage. 
Such a phase-locked interaction can operate under much less restrictive conditions 
than, say, the resonant triad, and so can have a wide application. The key condition 
for this mechanism to operate is phase-locking, i.e. the equality of phase speed. We 
note that in some experiments (e.g. Corke et al. 1992; Williamson & Prasad 1993a,b), 
the rapid growth of the oblique modes indeed coincides with the streamwise location 
at which this condition is satisfied. The fact that rather regular (three-dimensional) 
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flow structures are observed is also an indication that the dominant disturbances 
are phase-locked, since otherwise the changing phase relation would prevent the 
formation of a regular pattern. 

It is interesting to compare the phase-locked interaction with the resonant triad 
and the side-band instability, all of which can lead to the rapid (super-exponential) 
amplification of certain three-dimensional disturbances. As we have emphasized, 
the phase-locked interaction takes place between two modes, whereas the other two 
mechanisms involve a three-mode coupling. Nevertheless, the resonant triad can 
be regarded as a singular case of the phase-locked interaction in which the forced 
difference mode happens to coincide with an eigenmode. This most commonly arises 
when the oblique mode is a subharmonic of the planar mode, propagating at 60" to the 
flow direction, since then the forced difference mode is also an oblique subharmonic, 
propagating at -60". Goldstein & Lee (1992) and Wundrow et al. (1994) show that 
the resulting resonant-triad interaction can promote super-exponential growth of the 
oblique modes. On the other hand, there are situations where subharmonic resonance 
is inactive, notably for sinuous modes in a symmetric plane wake or jet. In that 
case, however, a difference mode may coincide with a varicose eigenmode, thus giving 
rise to an active resonant triad of mixed modes. This has been analysed by Wu 
(1996), who finds that super-exponential growth is once again possible. For both 
types of triad, the phase-locked interaction can be recovered in a limiting case of 
strong detuning. 

The side-band instability, by contrast, is a quite separate type of nonlinearity which 
operates in the weakly three-dimensional limit. Specifically, the cubic interaction 
between a planar mode (ao,O,c) and a weakly oblique 'side-band' mode ( x , - j , c )  
gives rise to a forced mode (2x0 - a, j , c ) .  When j << 1 and a FZ xO, this combi- 
nation mode approximately coincides with an eigenmode (the second 'side-band'), 
and the three modes can participate in a quasi-resonant interaction. In a future 
publication we shall show that this mechanism is distinct from, and operates along- 
side, the two-mode phase-locked interaction, and the two effects are comparable 
for a certain critical obliqueness. The phase-locked interaction dominates for larger 
obliqueness, the side-band resonance for smaller. An investigation of the latter regime 
shows that the side-bands can grow super-exponentially. Taken together, these var- 
ious mechanisms may help to explain why three-dimensional disturbances, whether 
subharmonics or not, become dominant in the later stage of transition. Since the 
phase-locked interaction is less selective than the other mechanisms, it may play some 
part in spectral broadening and randomization of the flow (e.g. Corke & Mangano 
1989). 

Another type of interaction which has been proposed to explain the development 
of three-dimensional structure, especially the mean-flow distortion, involves merely 
a pair of oblique modes (a, p, c) and (a ,  -j, c),  and no planar mode. This has been 
studied in the context of non-equilibrium critical layers by Goldstein & Choi (1989) 
and Wu et al. (1993). Such an interaction comes into play when the oblique modes 
have a magnitude of O ( p 3 ) ,  where p is the order of the growth rate. Given that 
for incompressible flows the fastest growing mode is two-dimensional, it seems more 
likely that the small oblique modes first attain the necessary magnitude as a result 
of interaction with a planar mode, either through a resonant-triad interaction, or 
through the phase-locked interaction, or through side-band interaction. This may 
then lead to the fully coupled stage where both the mutual interaction between the 
oblique waves and their feedback on the planar mode become important. On the 
other hand, the interaction between a pair of oblique modes may be the first nonlinear 
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activity to take place if they have a larger linear growth rate; this can be the case for 
supersonic boundary layers of low Mach number (Leib & Lee 1995) and for flows 
with pre-existing streamwise vortices (Goldstein & Wundrow 1995). 

In this paper, we have paid particular attention to the case of a plane wake. 
For this flow, it appears that the enhanced growth of sinuous three-dimensional 
disturbances cannot be attributed to subharmonic resonance, which is inactive, but 
may rather be the result of a phase-locked interaction. This conclusion seems to 
be strongly supported by the experimental work of Williamson & Prasad (1993a,b), 
which appeared when our theoretical study was in progress. They observed that an 
oblique shedding wave, of frequency f~ say, can interact with the dominant two- 
dimensional mode of frequency fT (which is excited by some free-stream disturbance) 
to seed an oblique mode with the frequency (fK - f T )  in the far wake. Williamson 
& Prasad found that the oblique mode soon overtook the two-dimensional mode and 
became dominant. In the experiments, the shedding wave had a frequency much 
higher than those of the locally unstable modes, and decayed exponentially (see also 
Cimbala, Nagib & Roshko 1988). It did not appear to participate in any further 
nonlinear interactions after acting to trigger the oblique mode (fK - fT). Therefore 
the interaction appears to be between two waves: the two-dimensional mode fr and 
the oblique mode (fK - fr). We believe that the enhanced growth of the oblique 
mode arises from a phase-locked interaction between these two modes, since they were 
found to have the same phase speed in the experiments. Williamson & Prasad also 
noted that increasing the magnitude of the two-dimensional wave led to enhanced 
growth of the oblique mode. This is predicted by our theory since equation (5.27) 
shows that the strength of the phase-locked interaction is proportional to IBI2. 

A different set of experiments was carried out by Corke et al. (1992). They intro- 
duced a two-dimensional wave simultaneously with a pair of oblique subharmonics, 
and mapped out the detailed development of each wave. Again, enhanced growth 
of the oblique modes was observed. They interpreted this in terms of subharmonic 
parametric resonance and a secondary-instability theory of Floquet type. However, 
since the measured growth rate of the oblique modes, though substantially larger 
than that predicted by linear theory, is comparable to that of the planar mode, it is 
not justifiable to treat the planar mode as quasi-steady in the secondary-instability 
calculations. For this and other reasons given in the introduction, we believe that the 
phase-locked interaction, which takes proper account of the non-equilibrium nature 
of the planar wave, is a more viable mechanism. This might be verified experimentally 
by varying the initial phase difference between the planar and the oblique waves. If 
this were found not to affect the development of the disturbance, that would favour 
the phase-locked interaction mechanism over the subharmonic resonance. The case I1 
studied in this paper is similar to the experimental conditions of Corke et al. (1992). 
In our computations, we have taken the velocity defect parameter to be comparable 
with that in these experiments, and the obliqueness angle to be 60", so that the oblique 
modes are (sinuous) subharmonics of the (sinuous) planar mode. As noted above, the 
development of the oblique waves in the 'secondary-instability' rbgime is in agreement 
with the measurement. Corke et al. (1992) also observed that while the distribution 
of the vertical velocity of the subharmonic is initially symmetric, as characteristic of 
a sinuous mode, it becomes increasingly asymmetric further downstream. This may 
be explained by the fact that for 60" obliqueness, the forced difference mode also has 
the subharmonic frequency, and is varicose in character. 

Other experiments (e.g. Sat0 1970; Sat0 & Saito 1975, 1978; Miksad et al. 1982) 
also showed a significantly large difference mode when a plane wake is excited by 
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two frequencies. This is consistent with our theoretical prediction. However, in those 
experiments the disturbance was believed to be two-dimensional while in our theory 
three-dimensionality plays an important role in inducing the large difference mode. It 
may be that a certain degree of three-dimensionality was present in the experiments. 

The mechanism described in this paper applies to any quasi-parallel shear flow 
which supports Rayleigh instabilities. As will be shown in a forthcoming paper, 
a similar theory may be constructed for Tollmien-Schlichting instabilities in, say, 
boundary layers. We further observe that the phase-locked interaction can also take 
place between two oblique modes which have the same phase speed but different 
frequencies : the mode with the higher frequency can accelerate the development of 
the lower-frequency mode when the amplitude of the former reaches O ( , U ~ / ~ ) .  In an in- 
compressible flow, for which the fastest growing linear instability is two-dimensional, 
a planar mode may well be the first to attain this amplitude. On the other hand, the 
phase-locked interaction between two oblique waves may be important to transition 
in supersonic flows where linear theory predicts that the fastest growing mode is 
three-dimensional. 
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Appendix A 

mode, are specified by 
The kernels appearing in (4.52), and in the amplitude equations for the planar 

Kh(5, q I A ) =  Vi((i" + q)(vo5 + Vdq)e-/i~i,1("5+"~)3+""O";'53 

+vi sin'Ot(5 + adq)(g,5 + r)e"(1-~;1)53--n~b1(~05+~d~)3 

-v,' sin26/' [ [ V O ~  + (1 + 2a)q + 2a,y] - 6 h ( q  + Y ) ~ ( V O ~  + q + y)] 
0 
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(3.85) of Wu et al. (1993). With a slight adjustment of notation, it takes the form 

X .  Wu and P. A.  Stewart 

The kernel K ,  associated with the self-interaction of the oblique modes is given by 

KJt, y I 4  = R(O)(5, W t 3  + t2r) 

(B 3) no((, y, 5) = e-A(453+6512+9q52+6rq~+6q2i) 

Although the kernel K ,  is algebraically complicated, in the inviscid limit ( A  = 0) it 
simplifies to the form 

K,(<, y I 0)  = (2t3 + t 2 y )  - 2 sin28(2t3 - <y2)  - 4 sin48(t2y + 5y2) , (B 4) 

which was obtained by Goldstein & Choi (1989). 
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